Decision-Making Context Interaction Network for Click-Through Rate Prediction

Xiang Li^{1*}, Shuwei Chen^{1*}, Jian Dong¹, Jin Zhang¹, Yongkang Wang¹, Xingxing Wang¹, Dong Wang¹

¹Meituan, Beijing, China {lixiang172,chenshuwei04,dongjian03,zhangjin11}@meituan.com {wangyongkang03,wangxingxing04,wangdong07}@meituan.com

AAAI 2023

Code: None

Details:

• Existing methods usually model user behaviors, while ignoring the informative context which influences the user to make a click decision.

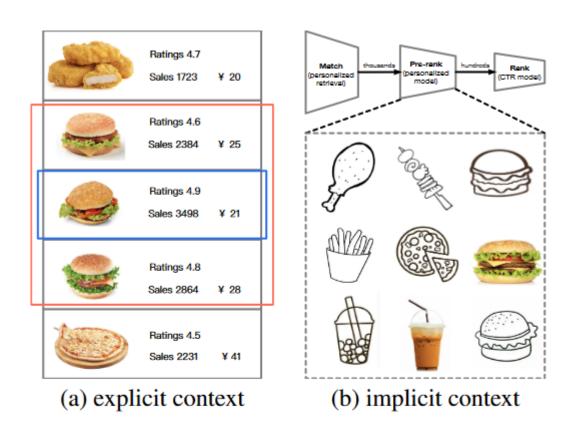
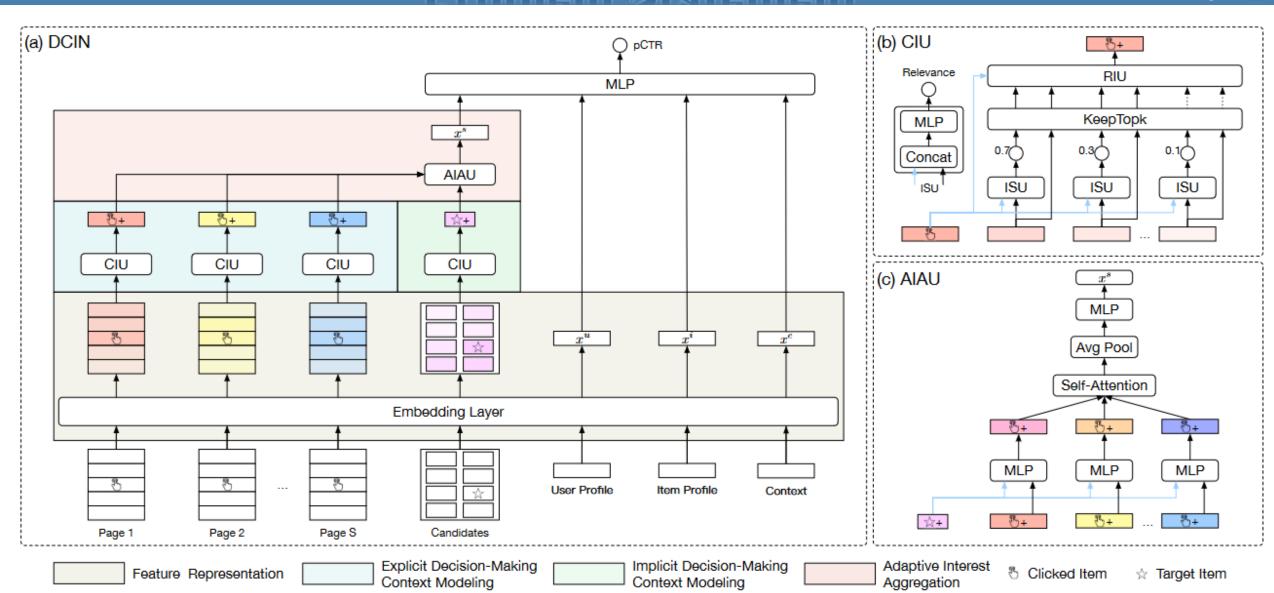


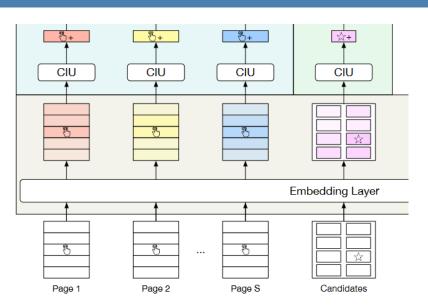
Figure 1: Illustration of explicit and implicit decision-making contexts. (a) The user proactively compares the attributes of the highly-related items in a local scope colored in red before making a click decision colored in blue. (b) We can deduce that the user likes fast food so much that the pre-ranking stage generates these candidates for him.

Problem Statement



 $xc = \{xc_1, xc_2, \dots, xc_S\}$ $p_i = \{p_{i,1}, p_{i,2}, \dots, p_{i,P}\}$ $xs = \{xs_1, xs_2, \dots, xs_C\}$

Method

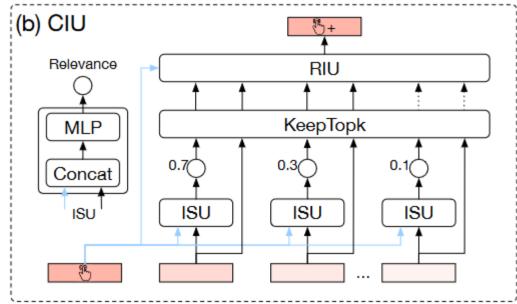


$$f_{i,j} = \text{MLP}([xc_i, p_{i,j}, xc_i - p_{i,j}, xc_i \odot p_{i,j}])$$
 (1)

$$f_{i,j} = \begin{cases} f_{i,j}, & \text{if } f_{i,j} \text{ is in the top-} k_1 \text{ elements of } f_i \\ -\infty, & \text{otherwise} \end{cases}$$
 (2)

$$Q_i = xc_i W^Q, \quad K_{i,j} = p_i W^K, \quad V_{i,j} = p_i W^V \quad (3)$$

$$xc_i^{aug} = (\text{softmax}(\frac{Q_i K_i^{\mathsf{T}}}{\sqrt{D_s}} + f_i)V_i)W^O + xc_i$$
 (4) $f_i = \{f_{i,1}, f_{i,2}, \dots, f_{i,P}\}$

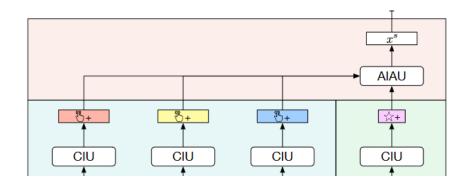


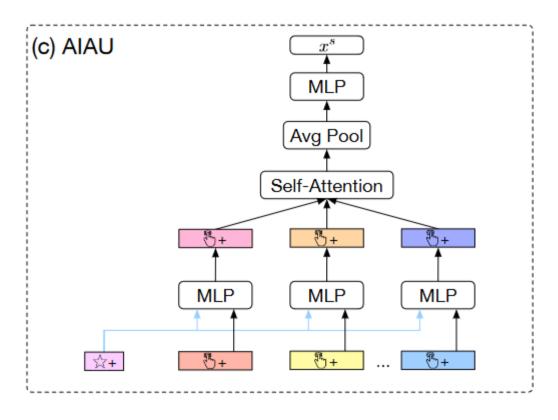
$$s_j = \text{MLP}([xt, xs_j, xt - xs_j, xt \odot xs_j])$$
 (5)

$$s_j = \begin{cases} s_j, & \text{if } s_j \text{ is in the top-} k_2 \text{ elements of } s \\ -\infty, & \text{otherwise} \end{cases}$$
 (6)

$$Q = xtW^{Q}, \quad K = xsW^{K}, \quad V = xsW^{V}$$

$$xt^{re} = (\text{softmax}(\frac{QK^{\mathsf{T}}}{\sqrt{D_{t}}} + s)V)W^{O} + xt \tag{7}$$





$$xc_i^a = \text{MLP}([xt^{re}, xc_i^{aug}]) \tag{8}$$

$$xc^m = \operatorname{softmax}(\frac{QK^\mathsf{T}}{\sqrt{D_a}})V$$
 (9)

$$Q = xc^a W^Q, \quad K = xc^a W^K, \quad V = xc^a W^V \tag{10}$$

$$x^{s} = MLP(Avg Pool(xc^{m}))$$
 (11)

$$\hat{y} = \text{sigmoid}(\text{MLP}([x^s, x^u, x^i, x^c])) \tag{12}$$

$$\ell = -\frac{1}{N} \sum_{k=1}^{N} (y_k \log \hat{y}_k + (1 - y_k) \log (1 - \hat{y}_k))$$
 (13)

Experiments

Dataset	Avito [†]	MeituanAds
# Users	0.54 million	0.2 billion
# Samples	0.88 million	5.3 billion
Avg # Behavior-Pages	1.9	7.3
# Candidates	20	60

Table 1: Statistics of datasets used in our experiments. Avito[†] denotes the constructed Avito dataset.

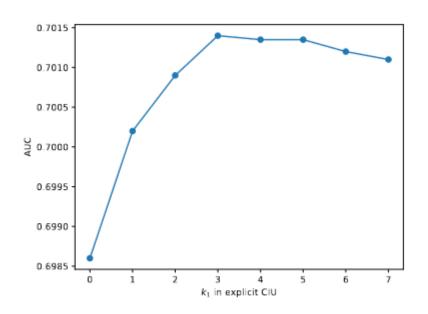
Model	Avito [†]		MeituanAds	
WIOGCI	LogLoss	AUC	LogLoss	AUC
DNN	0.5587	0.7756	0.1842	0.6891
DIN (Zhou et al. 2018)	0.5496	0.7834	0.1837	0.6936
DIEN (Zhou et al. 2019)	0.5490	0.7830	0.1833	0.6949
DFN (Xie et al. 2021)	0.5473	0.7841	0.1833	0.6961
DSIN (Feng et al. 2019)	0.5475	0.7847	0.1832	0.6963
CIM (Zheng et al. 2022)	0.5459	0.7852	0.1839	0.6960
RACP (Fan et al. 2022)	0.5452	0.7863	0.1830	0.6972
DCIN (ours)	0.5445	0.7904	0.1825	0.7014

Table 2: Performance of different models on datasets. Avito[†] denotes the constructed Avito dataset.

Models	AUC
DCIN w/o explicit CIU	0.6986
DCIN w/o implicit CIU	0.6991
DCIN w/o AIAU	0.6993
DCIN	0.7014

Table 3: Ablation studies of the components. Each component brings significant improvement in AUC, verifying their effectiveness.

Figure 3: Case study on MeituanAds dataset. We show the relevance score calculated in CIUs in one CTR prediction. The left part corresponds to explicit context modeling, and the right part corresponds to implicit context modeling.



0.7010 - 0.7000 - 0.6995 - 0.6990 - 0 5 10 15 20 25 30 35 k_2 in implicit CIU

Figure 4: Ablation studies of k_1 in explicit CIU.

Figure 5: Ablation studies of k_2 in implicit CIU.

Model	CTR	CPM	GMV
DCIN	+2.9%	+2.1%	+1.5%

Table 4: The performance in real online advertising system.

Thanks